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Abstract. Multi-modal fusion has shown initial promising results
for object detection of autonomous driving perception. However,
many existing fusion schemes do not consider the quality of each
fusion input and may suffer from adverse conditions on one or more
sensors. While predictive uncertainty has been applied to character-
ize single-modal object detection performance at run time, incorpo-
rating uncertainties into the multi-modal fusion still lacks effective
solutions due primarily to the uncertainty’s cross-modal incompa-
rability and distinct sensitivities to various adverse conditions. To
fill this gap, this paper proposes Uncertainty-Encoded Mixture-of-
Experts (UMoE) that explicitly incorporates single-modal uncertain-
ties into LiDAR-camera fusion. UMoE uses individual expert net-
work to process each sensor’s detection result together with encoded
uncertainty. Then, the expert networks’ outputs are analyzed by a gat-
ing network to determine the fusion weights. The proposed UMoE
module can be integrated into any proposal fusion pipeline. Eval-
uation shows that UMoE achieves a maximum of 10.67%, 3.17%,
and 5.40% performance gain compared with the state-of-the-art
proposal-level multi-modal object detectors under extreme weather,
adversarial, and blinding attack scenarios.

1 Introduction

Perception is a core subsystem of autonomous driving (AD) where
onboard sensors such as LiDAR, camera, and radar are used to sense
the surrounding environment. Object detection is one of the most
critical perception tasks which localizes and identifies the objects
of interest as important prerequisites to autonomous navigation. Re-
cently, multi-modal fusion-based AD object detection has received
enormous attention from both academia [6] and industry [31, 25].
In particular, as LiDAR and camera provide fundamentally different
and complementary information about the objects (i.e., depth and vi-
sual features), the fusion based on these two modalities has shown
initial promising results for object detection [12].

Recently, predictive uncertainty is proposed to measure the vari-
ability of model predictions under plausible inputs [15]. It has been
used to measure the quality of single-modal object detection results
[7, 22]. In the context of multi-modal fusion, we conjecture that the
uncertainty regarding the sensing result in each modality is valuable
to the fusion. For instance, when a sensor experiences transient in-
terference, the resulting high uncertainty value is an important indi-
cator for tuning down the weight of the corresponding sensing result
in the fusion. However, incorporating uncertainty into fusion-based
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AD object detection has not received systematic study. Most exist-
ing LiDAR-camera fusion approaches [26, 34, 23] do not consider
uncertainties. They may yield performance degradation when a sen-
sor experiences sensing quality drop in certain adverse settings. The
study in [5] is the only work considering uncertainty in fusion-based
object detection. However, it only considers the uncertainty of Li-
DAR’s sensing result and does not incorporate multi-modal uncer-
tainty into the fusion-based object detection algorithm. Thus, it falls
short of addressing the scenarios adverse on camera.

This paper aims at advancing the state of the art by designing
LiDAR-camera fusion for AD object detection with each modality’s
predictive uncertainty incorporated. However, this turns out to be
challenging, because i) there lacks informative and practical uncer-
tainty representations, ii) the LiDAR’s and camera’s uncertainties, as
dimensionless quantities, are not directly comparable, and iii) their
sensitivities to various adverse conditions are greatly different. These
properties render straightforward ways of incorporating uncertain-
ties, e.g., admitting raw uncertainties as fusion inputs, futile.

To address the challenges, we propose a new multi-modal fusion
module called Uncertainty-Encoded Mixture-of-Experts (UMoE) for
robust AD object detection. First, UMoE applies the Monte Carlo
Dropout [9] and Direct Modeling [15] approaches to estimate each
sensor’s uncertainty. Then, individual expert network is used to pro-
cess each sensor’s detection result with uncertainty encoded. Lastly,
the output features of each expert network are analyzed by a gating
network to determine the weights for fusion. With the uncertainty
encoding for both modalities, UMoE can retain the object detection
performance or allow more graceful performance degradation when
a single sensor or both sensors suffer sensing quality drops in adverse
scenarios.

This paper’s contributions are summarized as follows:

• We identify the challenges caused by the cross-modality proper-
ties of uncertainty in the multi-modal fusion design, i.e., distinct
uncertainty value ranges and varied sensitivities under different
adverse conditions. Based on the understanding, we encode the
LiDAR and camera uncertainties into comparable scores that can
be leveraged to refine detections across modalities.

• We propose UMoE that applies encoded uncertainties to weigh
and fuse the two sensing modalities for robust AD object detec-
tion. As a desirable feature, the UMoE module can be incorpo-
rated into any proposal-level fusion methods. To the best of our
knowledge, UMoE is the first modularized mechanism incorpo-
rating multi-modal uncertainties into AD object detection.

• Experiments show that UMoE outperforms advanced and state-of-
the-art LiDAR-camera fusion models on real-world and synthetic
datasets, including clear, snowy, foggy, adversarial, and blinding
attack scenarios.
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Figure 1. Object detection by camera, LiDAR, uncertainty-regardless fusion, and our uncertainty-encoded fusion under the three driving scenes of clear,
adversarial attack on camera, and adverse weather condition. Green and red bounding boxes indicate ground-truth and object detection results, respectively. TP
and FP refer to true positive and false positive detection results. Number pair (ucls, ureg) gives classification and regression uncertainty scores. The uncertainty-
regardless fusion method is still challenged by adverse conditions, whereas our fusion method remains robust.

2 Background

Object Detection based on Camera-LiDAR Fusion: According
to the combination stage of LiDAR and camera data representations,
current methods are categorized into data-, feature-, and proposal-
level fusion. This paper focuses on proposal-level fusion for the
following reasons. First, it is difficult to quantify uncertainty in
data- and feature-level fusion because existing studies estimate un-
certainty based on prediction proposals. Second, from the literature
[23, 12, 24], proposal-level camera-LiDAR fusion achieves competi-
tive and even superior performance compared with data- and feature-
level fusion methods. Lastly, proposal-level fusion can easily incor-
porate alternative neural networks into the fusion pipeline and thus
allowing easy adaptation to new object detector designs.

Predictive Uncertainty Estimation: Given plausible inputs, pre-
dictive uncertainty measures the variability of model predictions
[15]. Predictive uncertainty includes data uncertainty due to obser-
vation noises caused by sensor measurements or environment and
model uncertainty accounting for the uncertainty of the model that
can be reduced by observing enough data. Traditionally, data and
model uncertainties are modeled under the Bayesian deep learning
framework. Specifically, given a data sample x⃗, the predictive un-
certainty is p(ŷ|x⃗,D) =

∫
p(ŷ|x⃗, w⃗)p(w⃗|D)dw⃗, where D denotes

the training dataset, w⃗ represents the model weights, p(w⃗|D) and
p(ŷ|x⃗, w⃗) characterize the model and data uncertainties.

Data uncertainty is often modeled by Direct Modeling [8], which
assumes that the model prediction follows a probability distribu-
tion and directly predicts the parameters of such distribution us-
ing the network output layers. Model uncertainty is usually approx-
imated using techniques such as Monte Carlo (MC) Dropout [9]
and deep ensembles [17], because it is intractable to calculate the

weight posterior distribution over the dataset due to vast dimension-
ality. MC Dropout interprets dropout as a Bayesian approximation
of deep Gaussian process. The model uncertainty is given by per-
forming N forward passes on the same input with dropout enabled:
p(ŷ|x⃗,D) ≈ 1

N

∑N
n=1 p(ŷ|x⃗, w⃗). Deep ensemble estimates the pre-

dictive probability using an ensemble of models which have the same
architecture and are trained with random initializations and data shuf-
fled. Since deep ensemble incurs excessive memory footprint, in this
paper, we adopt MC Dropout to estimate model uncertainty.

In AD, the object detector usually produces a bounding box for
each detected object to describe the object location and the semantic
category (e.g., car, pedestrian) with a probability score. While, the
predicted bounding box regression variables are deterministic, and
the probability score may not effectively characterize the classifica-
tion uncertainties. Probabilistic object detectors aim to detect objects
accurately and apply reliable uncertainty estimation in both classi-
fication and bounding box regression tasks, which additionally gen-
erate the classification uncertainty which is quantified by the prob-
ability that the object belongs to the target class and the regression
uncertainty which is evaluated by the variance of the probability dis-
tribution over the predicted bounding box. The latter indicates the
amount of uncertainty in the position of the box corners. Each of the
classification and regression uncertainties includes data and model
uncertainties.

Multi-modal Fusion based on Uncertainty: Multi-modal fusion
considering the inherent uncertainty of individual modalities has
been explored in previous literature. [27] estimates predictive uncer-
tainty via variational inference across audio and visual modalities for
the activity recognition task. Their approach seeks an optimal uncer-
tainty threshold and it fuses predictive distributions that fall below
this threshold using average pooling. However, it restricts its consid-
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eration to information from non-degraded modalities with low un-
certainty. Similarly, [29] merges multiple uncertainty metrics by ap-
plying a Min operation on their deviation ratios with respect to the
training set. These ratios are subsequently utilized as the "tempera-
ture" for calibrating the prediction logit, and the logits are fused via
the noisy-or operation. Nonetheless, this approach is primarily de-
signed for the classification task, despite the fact that both classifica-
tion and regression results serve as crucial indicators in a 3D object
detection task. [4] fuses detection scores from multiple modalities
employing a probabilistic approach based on Bayes’ rule, coupled
with the weighted average of boxes based on their data uncertainties.
However, the method by [4] necessitates conditional independence
across modalities and struggles to adapt to the 3D object detection
task given that the output representations from two modalities dif-
fer. In contrast, our method adaptively fuse LiDAR and camera de-
tections, harnessing both classification and regression uncertainties
across all levels. It effectively addresses the representation disparity
between LiDAR and camera detectors and possesses the flexibility to
accommodate detectors with varying cognitive abilities.

3 Motivating Examples
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Figure 2. Average uncertainty scores in four different driving contexts:
clear and synthetic adversarial attack scenes from KITTI dataset; clear and
dense fog scenes from STF dataset. The vertical dashed line separates the two
different datasets.

For object detection in real driving scenarios, the classification and
regression uncertainties are affected by variations in the environment
or sensor data and the detector’s cognitive ability determined by w⃗.
For example, adverse weather and adversarial attacks can degrade
the detection performance and increase the uncertainties. This sec-
tion provides motivating examples to understand how the predictive
uncertainties of LiDAR and camera vary in normal and adverse sce-
narios. We also preview the advantages of our proposed uncertainty-
encoded LiDAR-camera fusion.

Fig. 1 shows the detection results of the input frames under
four representative driving contexts: (a) the clear weather scene
from the KITTI dataset [10], (b) the scene under the adversarial
perturbation attack [20] against camera, (c) clear scenes, and (d)
dense fog weather scenes from the STF dataset [1]. We compare
the detection performance of the camera-based detector RetinaNet

[19], LiDAR-based detector SECOND [33], uncertainty-regardless
LiDAR-camera fusion detector CLOCs [23], and our uncertainty-
encoded LiDAR-camera fusion detector. The detection results in the
last three columns are shown in bird’s-eye view.

In this section, we use Eqs. (1) and (3) presented later to estimate
the scalar classification and regression uncertainty scores. In a more
extensive set of experiments, we compute the average classification
and regression uncertainty scores of true positive and false positive
detections for LiDAR and camera over datasets of the aforemen-
tioned driving scenes. False positive detections can lead to incorrect
evasive actions that may cause accidents. The results are presented
in Fig. 2.

Fig. 1 and Fig. 2 give four observations. First, classification and
regression uncertainty scores, especially for false positives, gener-
ally increase when sensors are affected by adverse scenarios. Sec-
ond, in the same driving scenes, false positives generate much higher
classification and regression uncertainty scores than true positives.
However, LiDAR tends to produce higher classification uncertainty
for true positives in adverse weather condition of Fig. 2(b), as a re-
sult of the lower quality and challenging nature of the dataset used.
This highlights the need for utilizing both classification and regres-
sion uncertainty to address deficiencies in the dataset. Third, cam-
era and LiDAR have different sensitivities and cognitive abilities to
the environment changes. Camera’s uncertainty scores show greater
volatility than LiDAR’s. Lastly, camera’s and LiDAR’s regression
uncertainty values are in different orders.

From above, predictive uncertainty is indicative of sensing per-
formance, while camera’s and LiDAR’s uncertainties exhibit distinct
sensitivities under different adverse scenarios. This motivates us to
design a new fusion method with encoded uncertainties as part of the
input. As previewed by the last column of Fig. 1, our method effec-
tively exploits uncertainties for robust object detection under adverse
conditions.

4 Problem Formulation
This paper considers fusion-based object detection using camera and
LiDAR. The 3D point cloud data from LiDAR, denoted by x⃗L ∈ R3,
and the 2D RGB image data from camera, denoted by x⃗I ∈ R2,
are processed by the LiDAR detection branch HL and camera detec-
tion branch HI , respectively. For each frame, HL produces detection
p⃗L = {p⃗L1 , . . . , p⃗LML

}, where each p⃗LmL
represents a proposal con-

sisting of the 3D bounding box coordinates and the confidence score.
Similarly, HI generates detection p⃗I = {p⃗I1, . . . , p⃗IMI

}. The fusion
combining HL and HI produces detection p⃗ = {p⃗1, . . . , p⃗K}, where
K = ML ×MI and each element p⃗k = (p⃗Lk , p⃗

I
k) is a proposal pair

consisting of a LiDAR proposal and a camera proposal. We aim to
explicitly use LiDAR’s and camera’s detection uncertainties in the
above fusion process to derive the final detection that is robust under
various adverse conditions covered by training data.

To this end, we first employ uncertainty estimation for Li-
DAR and camera proposals to derive LiDAR detection uncertainty
u⃗L = {u⃗L

1 , . . . , u⃗
L
ML

} and camera detection uncertainty u⃗I =

{u⃗I
1, . . . , u⃗

I
MI

}. Then, we aim to derive the weights that determine
the importance of the two sensing modalities for each proposal pair
(p⃗Lk , p⃗

I
k) ∈ p⃗ based on uncertainties u⃗L and u⃗I . To preserve the

consistency of the input for subsequent fusion models, we imple-
ment the weights by refining the confidence score of detection result.
Specifically, we aim to find the function represented by fu that maps
LiDAR and camera proposals and their uncertainty to uncertainty-
encoded confidence score s⃗′, i.e., s⃗′ = fu(p⃗

L, u⃗L, p⃗I , u⃗I), where
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Figure 3. The pipeline of the UMoE module integrated proposal-level LiDAR-camera fusion network. Dotted lines represent data flow of the UMoE module,
while solid lines are for general proposal-level fusion.

s⃗′ = {s⃗′L, s⃗′I}. Subsequently, proposals that have their confidence
scores replaced by s⃗′ can be fused to generate the final detection:
p⃗∗ = fs(p⃗

L, p⃗I), where fs(·) is the fusion operation or fusion net-
work.

There are three main challenges in designing fu. First, fu requires
informative and practical uncertainty representations u⃗L and u⃗I as
input. The representation should be distinguishable, ensuring that it
assigns different values to true positives and false positives across
all scenarios. Besides, in the context of AD, the uncertainty repre-
sentation should be calculated without any groundtruth labels and
computationally efficient. Second, the two modalities’ uncertainties
respond to adverse conditions differently. For instance, in the fog
scenarios of Figs. 2(c) and 2(d), the average regression uncertainty
score for false positives from camera increases significantly, while
the value for LiDAR decreases slightly. Third, regression uncertain-
ties computed based on 3D and 2D bounding boxes from LiDAR and
camera lie in different ranges. The common 2D bounding box rep-
resentation encodes top-left and bottom-right corners in camera co-
ordinate, while 3D bounding box includes position, dimension, and
rotation angle in LiDAR coordinate. The range difference of these
encoded elements results in higher regression uncertainty for a 2D
bounding box than that of a 3D bounding box. Our results in Fig. 2(c)
and 2(d) exhibit this issue. The above discrepancies render straight-
forward ways of incorporating uncertainties, e.g., admitting raw un-
certainties as fusion input, futile.

5 Uncertainty-encoded Mixture-of-Experts
(UMoE) Fusion Module

To address the above challenges, we propose a fusion module
called Uncertainty-encoded Mixture-of-Experts (UMoE) that bridges
the sensor-specific detectors and the proposal-level fusion network.
Fig. 3 illustrates the proposal-level LiDAR-camera fusion framework
with our UMoE module integrated. First, LiDAR- and camera-based
detectors take sensor data to generate detection proposals. With un-
certainty scoring, we extend each proposal with uncertainty scores
to build the UMoE input. Then, the expert network for each sensing
modality extracts sensor-specific features from the UMoE input. The
gating network takes the combined features generated by the pre-
ceding expert networks and generates the uncertainty-encoded con-
fidence scores. Finally, detection proposals with updated confidence

scores can be applied in the proposal-level fusion networks.

5.1 Uncertainty Scoring

Now we describe our uncertainty scoring approach. Denote object
proposals produced by sensor-specific detectors as p⃗ = {s, b⃗}, where
s and b⃗ denote confidence score and bounding box. By using the
MC Dropout uncertainty estimation approach, each proposal p⃗k is
assigned with uncertainty u⃗k = {u⃗k,cls, u⃗k,reg} consisting of the
classification uncertainty u⃗k,cls ∈ RC and regression uncertainty
u⃗k,reg ∈ RB , where C and B are the numbers of classes and el-
ements in bounding box representation. To encode u⃗k into UMoE
input tensor, we transform the vectors u⃗k,cls and u⃗k,reg into scalar
uncertainty scores uk,cls ∈ R and uk,reg ∈ R as follows.

First, we use entropy to score classification uncertainty:

uk,cls = −
∑C

c=1 sc log sc, (1)

where sc = 1
N

∑N
n=1 p(ŷ = c|x⃗k, w⃗n) represents the average pre-

dicted classification probability of class c over the N forward passes
of MC Dropout. Eq. 1 yields high classification uncertainty scores
uk,cls for proposals with intermediate average predicted classifica-
tion probability sc, while demonstrating reduced values for proposals
with sc at either extreme. However, the task complexity is modality-
dependent, with LiDAR-based 3D detectors generally exhibit lower
confidence levels compared to their camera-based 2D counterparts.
Consequently, as illustrated in Fig. 2(b) for LiDAR classification
uncertainty scores, false positives with low confidence scores have
smaller average scores than true positives. To ensure the informa-
tiveness of the classification uncertainty score, we enhance it with a
classification deviation ratio, a quantitative metric designed to eval-
uate the extent to which a proposal’s confidence score and classifi-
cation uncertainty score deviate from the true positives’ distribution.
Specifically:

δk,cls =
µu

µu +max(0, (uk,cls − µu − σu))
·

µs

µs +max(0,−(sc − µs − σs))

(2)

where µu, σu, µs, σs are the mean and standard deviation of clas-
sification uncertainty scores and the average predicted classification
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probability for true positives in the validation set. The computed ra-
tio, δk,cls, serves to assign larger value to proposals whose classifi-
cation uncertainty score uk,cls and average predicted classification
probability sk fall within the distribution of true positives, while as-
signing smaller values to those proposals that are out-of-distribution.
As illustrated in Fig. 4, the deviation ratio is more informative than
the classification uncertainty score, as it effectively captures the dif-
ferences between false positives and true positives, as well as ac-
counting for adverse conditions.
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Figure 4. Average cls deviation ratio in the same contexts as Fig. 2.

After that, we use the total variance of u⃗k,reg to score regression
uncertainty:

uk,reg = tr
(

1
N

∑N
n=1 b⃗k,nb⃗

⊺
k,n − ⃗̄bk

⃗̄b⊺k

)
, (3)

where ⃗̄bk = 1
N

∑N
n=1 b⃗k,n is the mean bounding box coordinates

over the N forward passes of MC Dropout. On top of this, we adopt
the Direct Modeling method for data uncertainty of bounding boxes.
We assume that each regression output follows an independent Gaus-
sian distribution and estimate the variance of these outputs. We then
generate Monte Carlo samples from this distribution and add the to-
tal variance of these samples to uk,reg . The total variance ranges in
[0,∞], where a larger value indicates higher regression uncertainty.
However, the sizes of the 2D bounding boxes in the image plane have
significant influence on the values of the total variance. For instance,
a closer object with a larger bounding box leads to a large uk,reg . To
achieve fair comparisons among objects at different distances, we di-
vide uk,reg by the diagonal length of the averaged bounding box ⃗̄bk.
We also apply standardization to uk,reg with mean and standard de-
viation of regression uncertainty calculated from the clear validation
set.

With the uncertainty scores, we extend each original pro-
posal p⃗k = {sk, b⃗k} for both LiDAR and camera to p⃗k =

{sk, b⃗k, δk,cls, uk,reg}. For a given scene, all of the K LiDAR-
camera proposal pairs are used to build the tensors T⃗ I

UMoE =
{s⃗I , δ⃗Icls, u⃗I

reg} ∈ R1×K×3, T⃗L
UMoE = {s⃗L, δ⃗Lcls, u⃗L

reg} ∈
R1×K×3, which will be used as input to the UMoE module.

5.2 Multi-Modal Uncertainty Fusion via UMoE

Our UMoE is based on the Mixture of Experts (MoE) architecture
[14], which is designed to handle multiple different tasks in complex
scenarios. Existing works [16, 21] demonstrate MoE’s effectiveness
in multi-modal perception including LiDAR-camera fusion. The key
advantage of MoE is that it contains distinct expert networks to ex-
tract features from each of the sensing modalities and then uses a
gating network to combine and learn from the different extracted fea-
tures to give final output. To find the mapping fu, our UMoE module
substitutes the traditional inputs of MoE with T⃗ I

UMoE and T⃗L
UMoE to

produce uncertainty-encoded confidence scores s⃗′. The detailed de-
signs of our UMoE components are as follows.

5.2.1 Expert networks

As shown in the motivating example section, different sensing
modalities have distinct sensitivities and value ranges for uncer-
tainty scoring. Thus, we exploit different expert network for each
sensing modality that maps input tensors to sensor-specific fea-
tures for further fusion. Specifically, the expert network for LiDAR
branch EL consists of a set of Residual blocks [11]. The Resid-
ual Block operation is denoted by ResBlock(cin, cout, k), where
cin, cout are the input and output channel size and k is the ker-
nel size of 2D convolution layers inside. In EL, we employ three
Residual blocks ResBlock(3, 9, (1, 1)), ResBlock(9, 18, (1, 1)),
and ResBlock(18, 18, (1, 1)) sequentially. Similarly, the expert net-
work for camera branch EI follows the same structure. The process
can be described as: F⃗L = EL(T⃗

L
UMoE), F⃗

I = EI(T⃗
I
UMoE), where

F⃗L, F⃗ I ∈ R1×K×18 are the feature vectors that encode confidence
score and uncertainties for each proposal of the corresponding sens-
ing modality.

5.2.2 Gating network

The gating network concatenates features F⃗L, F⃗ I across all sensor
modalities into a joint feature F⃗J , which yields a tensor with size
1 × K × 36. Next, two output branches GL(·) and GI(·) take the
same joint feature FJ as input and predict uncertainty-encoded con-
fidence scores s⃗′

L
and s⃗′

I
, respectively. Each output branch con-

sists of the a single Residual block ResBlock(36, 1, (1, 1)). The
pipeline of the gating network is defined as follows: s⃗′

L
= GL(F⃗J),

s⃗′
I
= GI(F⃗J), where F⃗J = F⃗L ⊕ F⃗ I . The outputs s⃗′

L
and s⃗′

I

are used to substitute the original confidence scores s⃗L and s⃗I of
corresponding proposals based on their uncertainty scores. These re-
fined proposals can then be input into various proposal-level fusion
networks for further processing.

5.3 Training

We now present the training of our UMoE module. We first train
the sensor-specific detectors and then fix them to train the UMoE
module. For sensor-specific detectors, we add dropout layers to en-
able model uncertainty estimation using the MC-Dropout approach.
Moreover, we follow the Direct Modeling approach to add the fol-
lowing loss function to the training of the sensor-specific detectors:
Ladd = 1

2
exp(− log(σ⃗2))||b⃗gt − b⃗|| + 1

2
log(σ⃗2), where σ⃗ is the

estimated data uncertainty, b⃗ is the predicted bounding box, and b⃗gt
is the corresponding ground truth. With modified sensor-specific de-
tectors, we can train the UMoE module solely or with a proposal-
level fusion network in an end-to-end manner. In this way, the UMoE
module learns to produce uncertainty-encoded confidence score via
supervision from final detection p⃗∗, i.e., the 3D predictions generated
by the fusion network.

6 Experiments
This section evaluates UMoE in comparison with uncertainty-
regardless LiDAR-camera fusion methods on four datasets that cover
the scenarios of clear/adverse weather conditions, adversarial attack,
and camera blinding attack.
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Table 1. AP3D on KITTI (clear), KITTIAdv (attack) and KITTIBlind (attack) datasets w/o and w/ the UMoE module.

Method UMoE KITTI AP3D KITTIAdv AP3D KITTIBlind AP3D

easy mod. hard easy mod. hard easy mod. hard

CLOCs_SecRetina 91.61 81.86 77.68 87.77 77.73 73.87 87.89 78.28 76.24
✓ 90.25 81.87 79.02 89.36 77.82 75.32 90.43 81.80 79.08

CLOCs_PointRetina 90.42 81.80 78.62 85.48 75.41 73.27 84.59 78.28 75.70
✓ 89.88 80.47 77.77 88.65 77.82 75.55 89.99 80.31 77.81

Table 2. AP3D performance on STF clear, dense fog and snow test splits w/o and w/ the UMoE module.

Method UMoE Clear AP3D Dense Fog AP3D Snow AP3D

easy mod. hard easy mod. hard easy mod. hard

CLOCs_SecRetina 49.89 47.97 43.88 31.55 31.92 28.10 43.52 41.14 36.43
✓ 49.84 48.41 43.40 37.05 35.48 32.32 47.27 44.25 39.75

CLOCs_PointRetina 46.53 43.73 39.73 28.67 27.80 27.34 43.49 40.16 36.48
✓ 46.37 45.46 41.63 39.34 37.18 32.89 43.04 40.28 36.20

6.1 Datasets

Clear Scenario - KITTI: For sunny daytime driving scenarios, we
use KITTI 3D object detection dataset [10] and follow the standard
data split [3] with a 3,712 frames train set. We randomly divide the
standard val split into a val set with 1,884 frames and a test set with
1,885 frames. This allows us to calculate deviation ratio and enables
the evaluation of subsequent attack datasets created based on test set.

Adversarial Attack Scenario - KITTIAdv: We synthesize the
adversarial attack scenario by perturbing camera images using PGD
[20] method on the divided KITTI test set (See details in Ap-
pendix A.1). The attack strength of PGD attack is 4/255.

Camera Blind Attack Scenario - KITTIBlind: We follow meth-
ods in [35] to generate facula with a radius of 112 pixel and overlay
it on the divided KITTI test set to form our self-synthetic KITTIB-
lind dataset that mimics strong light exposure affecting the camera
modality (details are described in Appendix A.1).

Adverse Weather Scenario - STF: To simulate adverse weather,
we adopt the STF [2] dataset including clear, dense fog and snow sce-
narios. The STF clear weather training set, validation set and test set
has 3686, 921 and 1536 scenes. Its dense fog test set has 88 scenes;
snow test set has 1161 scenes. For models trained on clear weather
training set, we select the snapshot with the best performance on
clear validation set and evaluate it on aforementioned test splits.

Table 3. Comparison AP3D results of the proposed method and the state-
of-the-art fusion baselines in KITTI and KITTIBlind (attack) datasets. We
highlight the best performance in bold and the second best in underline.

Dataset Method AP3D

easy mod. hard

KITTI

PointPainting 89.23 79.31 76.86
EPNet 92.16 82.69 80.10
CLOCs 91.61 81.86 77.68

CLOCs + UMoE 90.25 81.87 79.02

KITTIBlind

PointPainting 87.26 77.20 74.44
EPNet 87.03 75.38 73.78
CLOCs 87.89 78.28 76.24

CLOCs + UMoE 90.43 81.80 79.08

6.2 Implementation

This section describes the implementation of our approach and the
employed baselines.

Uncertainty-regardless fusion baseline: We select the CLOCs
[23], PointPainting [30] and EPNet [13] as representative proposal-
level, data-level and feature-level fusion baselines. For the
CLOCs, we combine SECOND [33] and RetinaNet [19], named
CLOCs_SecRetina, and adopt PointPillar [18] and RetinaNet, named
CLOCs_PointRetina as the 3D and 2D detectors. We use OpenPCDet
[28] and Detectron2 [32] as our 3D and 2D codebases and apply the
default settings. For the CLOCs fusion network, we follow [24] that
use Residual blocks instead of standard 1× 1 convolution layers and
optimized with Adam optimizer for 20 epochs. We employed the
OneCycleLR learning rate scheduler with an initial learning rate of
6×10−5, a maximum learning rate of 6×10−4, and a weight decay
of 0.01. A specific description of the CLOCs fusion model structure
is detailed further in Appendix A.2. For PointPainting and EPNet,
we fork the original implementations without any modification.

Uncertainty-encoded fusion: We integrate the UMoE module
into CLOCs_SecRetina and CLOCs_PointRetina as our uncertainty-
encoded fusion models. To enable uncertainty estimation on sensor-
specific detectors, we follow two steps to retrain 3D and 2D detec-
tors. First, we add dropout after each DeConv2D layer for the 3D
detectors and after each Conv2D layer for the detection head of the
RetinaNet. The dropout rate is set at 0.1 for all the detectors. Next,
the additional loss item previously mentioned is added during train-
ing to estimate data uncertainty (refer to Appendix A.2 for explicit
sensor-specific detectors’ training settings). During the inference of
sensor-specific detectors, we perform 10 stochastic samplings with
dropout enabled, as suggested in [15]. With the retrained sensor-
specific detectors fixed, we apply the same settings with the CLOCs
fusion network and train our UMoE module with the fusion network
in an end-to-end manner.

6.3 Overall Performance
We report our evaluation results on the most dominant class, cars,
in four datasets. The Average Precision of 40 recall position with an
IoU threshold of 0.7 in 3D space (AP3D) is used as the evaluation
metrics. Due to the space limitation, we present visualization figures
in Appendix A.4.
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Table 4. Ablation study about the effects of classification deviation ratio (DR.), regression uncertainty score (Reg.) and the MoE architecture. The best results
are in bold and the second best are underlined.

DR. Reg. MoE KITTIAdv KITTIBlind STF Snow STF Dense Fog

easy mod. hard easy mod. hard easy mod. hard easy mod. hard

✓ ✓ 88.91 77.21 74.87 90.07 81.59 79.02 45.91 42.90 38.99 36.58 35.00 32.12
✓ ✓ 89.13 77.76 75.31 89.96 81.56 78.91 45.14 42.51 38.56 34.50 34.65 30.77
✓ ✓ 85.81 75.57 73.82 87.53 80.27 78.18 45.59 42.76 38.87 35.55 35.37 31.18
✓ ✓ ✓ 89.36 77.82 75.32 90.43 81.80 79.08 47.27 44.25 39.75 37.05 35.48 32.32

KITTI: Based on evaluation results on KITTI test set, our UMoE
module maintains a satisfactory overall performance under clear sce-
narios. The UMoE-integrated fusion model performs comparably to
uncertainty-regardless fusion in Table 1. Similar observations can be
found in Table 3 when comparing with state-of-the-art fusion base-
lines.

KITTIAdv: With numerous false positives generated from the
camera-based detector due to the adversarial attack, AP3D of
uncertainty-regardless fusion baseline drops rapidly. However, the
fusion models integrated with UMoE outperform the baseline, i.e.,
improve AP3D from 87.77% to 89.36% on easy objects. This result
may be attributed to the fact that UMoE down-weights false positive
proposals with large uncertainty.

KITTIBlind: As seen in the KITTIBlind dataset results presented
in Table 1, our UMoE module outperforms the uncertainty-regardless
fusion baseline significantly and maintains a similar level of perfor-
mance as in clear scenarios. Additionally, the AP3D of all state-of-
the-art fusion baselines decrease with affected camera under strong
light exposure in Table 3, while our module remains robust.

STF: We show the evaluation results for the STF dataset in Ta-
ble 2. LiDAR and camera degrade simultaneously in extreme weather
conditions. The AP3D for both fusion models decreases in these
scenes due to noisy LiDAR point clouds and camera images. Our
proposed UMoE module significantly improves the AP3D under ad-
verse weather scenarios, with a maximum increase of 10.67% un-
der dense fog weather and 3.75% in snow scenes. Additionally, the
UMoE-integrated fusion models achieve comparable or even better
results in clear scenarios. These results demonstrate that UMoE can
effectively improve robustness in extreme weather conditions.
Statistical significant test: We calculate p-values on moderate
AP3D from 10 runs of CLOCs_SecRetina and its baseline, which
are 0.01, 2.9× 10−14, 1.4× 10−7, 1.6× 10−8 in KITTIAdv, KIT-
TIBlind, snow and dense fog scenarios. Each p-value is less than 0.05
threshold, confirming the significance of our module’s improvement.

6.4 Ablation Study

To analyze the effects of uncertainty scoring and the MoE architec-
ture, we conduct ablation studies by removing each component on
the CLOCs_SecRetina model. We report results in Table 4, includ-
ing AP3D on KITTIAdv dataset, KITTIBlind dataset, and the snow
and dense fog test sets from the STF dataset.

Encoded uncertainty: To study the effectiveness of the encoded
uncertainties, we remove classification deviation ratio or regression
uncertainty scores from the input tensor T⃗ I

UMoE and T⃗L
UMoE. As shown

in Table 4, utilizing only the classification deviation ratio (row 2)
provides relatively limited benefits, though it is particularly advanta-
geous in adversarial attack scenes. Conversely, relying solely on the
regression uncertainty score (row 1) generally results in more consid-
erable benefits, especially in dense fog scenarios, likely attributable
to its effectiveness in identifying false positives. Moreover, incorpo-
rating all components (row 4) culminates in the highest performance

across all scenarios, suggesting that both uncertainties serve as cru-
cial cues in the 3D object detection task.

MoE: To investigate the effectiveness of MoE, we remove this
architecture and feed uncertainty scores directly to the fusion layer.
The results in row 3 demonstrate that even with complete uncertain-
ties, the model without MoE performs poorly in some adversarial
attack and snow scenarios. This confirms the necessity of using MoE
in handling the uncertainty differences across modalities and ranges.

6.5 MC-dropout runtime analysis

This section briefly analyzes the runtime of the MC-dropout tech-
nique applied in our method. As described in Section 6.2, we perform
10 MC-dropout runs only on the detection head of sensor-specific de-
tectors during the inference. Under these settings, the running speed
is around 6 fps and 40 fps for uncertainty-encoded and uncertianty-
regardless RetinaNet, respectively. The speeds are 11 fps and 24 fps
for SECOND detector and 15 fps and 40 fps for PointPillar. It is
worth noting that our extensive experiments show that the detection
performance growth stabilizes after 5 runs. With the development of
edge devices, computational redundancy can be exploited when us-
ing MC-dropout. Therefore, it will not drastically increase the cost.

6.6 Limitations

Our approach encounters two primary limitations. Firstly, sensor-
specific detectors may suffer slight performance degradation due to
uncertainty estimation techniques such as MC-Dropout, particularly
in clear scenarios, which can impact fusion performance. However,
our approach can adapt advanced uncertainty estimation method to
minimize such reductions. Secondly, the UMoE module can only
mitigate, not eliminate, the effect of adverse scenarios. In situations
of all sensors fail, our method’s enhancement remains limited.

7 Conclusion
Autonomous driving is moving rapidly toward a higher level of au-
tomation in more complex environments, demanding the ability of
coping with all kinds of uncertainties. This paper systematically stud-
ied how to incorporate the predictive uncertainties of individual sen-
sors in multi-modal fusion, a fundamental task of autonomous driv-
ing perception. We score uncertainties and propose a fusion mod-
ule that exploits the Mixture-of-Expert architecture to encode multi-
modal uncertainties in any proposal-level fusion pipelines. Exper-
imental results show that our module significantly improves the fu-
sion performance in adverse scenarios. In addition to LiDAR-camera
fusion, the scope of our methods can be broadened to encompass var-
ious scenarios, like incorporating additional sensors such as radar, or
enhancing the LiDAR-only single-modality detection which is com-
mon in industrial-level autonomous driving systems. Far beyond the
object detection metrics, evaluating the robustness of multi-modal
fusion in various downstream tasks is interesting for future work.
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A Appendix
A.1 Datasets

In our experiment, we evaluate on datasets with attacks and adverse
weather scenarios. The adverse weather dataset STF is publicly avi-
lable, while KITTIAdv and KITTIBlind are synthetically created by
us to simulate attacks. In this section, we provide detailed descrip-
tions of how these two datasets were constructed.

• KITTIAdv dataset is introduced to emulate scenarios where the
camera is dysfunctional by the adversarial perturbation attack. The
attack is conducted by adding minute, imperceptible changes to
each pixel in the image. We employ the Project Gradient Descent
(PGD) method to accomplish our attack goal. Let us denote the
initial perturbed image to as Iper0 . The attack is then implemented
by updating the perturbation δpern via the projected loss gradient
of the camera-based detector, across multiple iteration as follows:

δpern = Clipϵ{α× sign(∇I)L(Oθ(I
per
n ), btrue)},

Ipern+1 = Ipern + δpern

(4)

where Clipϵ{·} guarantees that the value falls within the [−ϵ, ϵ], α
is the parameter that controls the attack intensity, sign(·) denotes
the sign function, Oθ(·, ·) denotes the camera-based detector pa-
rameterized by θ, L(·) represents the loss function of Oθ(·), btrue

is the ground truth label, and 0 ⩽ n ⩽ N − 1. In our implemen-
tation, we have set the value range ϵ at 76, attack intensity α at 1,
and the iteration number N at 4.

• KITTIBlind dataset contains fabricated scenarios in which the
camera is blinded by intense light beams. To create the affected
camera data, we superimpose a Gaussian facula onto the image.
The radius of this facula is set to 112 pixels on a KITTI image
of dimensions 1242 × 374. For each image sample in the KITTI
dataset, we randomly select a location to serve as the center point
for the facula placement, within a predefined region in front of the
ego vehicle. This region is specified as [621, 745] for the column
and [75, 299] for the row.

A.2 Implementation

The implementation details of sensor-specific detectors and the
proposal-level fusion network are described as follows:

For the LiDAR-based detectors, we adopt to the default settings
provided in the open-source codebase, OpenPCDet, to train the SEC-
OND and PointPillar models. For the camera-based RetinaNet de-
tector, we leverage another open-source codebase, Detectron2, for
model training. We set an initial learning rate of 0.0025 with a drop
factor of 10 and train the model in with a batch size of 4 for 90, 000
iterations. During the inference phase, we set the non-maximum sup-
pression (NMS) threshold to 0.5 for uncertainty-regardless fusion
and 0.7 for uncertainty-encoded fusion in order to meet the requi-
site specifications for the proposal-level fusion network input.

For the proposal-level fusion method, we utilize the state-of-the-
art model, CLOCs, to demonstrate the effectiveness of our approach.
For a detailed pipeline of CLOCs: in each scene, the 3D LiDAR
point clouds and 2D RGB image are first processed by their respec-
tive sensor-specific models to generate LiDAR and camera proposals.
Before the NMS operation, for each pair of LiDAR and camera pro-
posals, an input tensor TCLOCs = {IoU, sI , sL, d} is constructed.
Here, IoU denotes the Intersection over Union for 2D and 3D pro-
posals in the image plane, sI and sL represent confidence scores,

and d signifies the distance of the LiDAR proposal to the ego vehi-
cle. Subsequently, TCLOCs is processed by its fusion layer, which
consists of four 1× 1 2D convolution layers to predict refined confi-
dence scores for more accurate 3D predictions. In [24], authors have
replaced the 1 × 1 2D convolution layers with residual blocks to
achieve superior performance. Although they only provide a descrip-
tion without making the code publicly available, we have reproduced
the updated CLOCs as our proposal-level fusion network in the ex-
periment.

A.3 Statistical Analysis

Fig. 5 provides statistical analysis of classification deviation ratio and
regression uncertainty score for the KITTIBlind dataset and snow
scenes from STF dataset. Similar to the observations in Figures 2
and 4, these scores serve as discriminative indicators between true
positives and false positives, and exhibit varying sensitivities to en-
vironment changes.
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Figure 5. Average classification deviation ratios and regression uncertainty
scores in blind attack and snow driving contexts complementing Fig. 2. Clear
scenes are included for comparison.

A.4 Visualization

Fig. 6 and 7 shows some qualitative results of uncertainty-regardless
fusion baselines, uncertainty-encoded fusion method, and the corre-
sponding 2D images across all aforementioned scenarios. Detections
are represented by red bounding boxes, while ground truth detections
are denoted by green bounding boxes.
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Clear Snow Dense Fog

Figure 6. Qualitative results of uncertainty-regardless fusion baselines, uncertainty-encoded fusion method, and the corresponding 2D images. Red bounding
boxes are detections, and green bounding boxes denotes the ground truth detections.
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Figure 7. Qualitative results of uncertainty-regardless fusion baselines, uncertainty-encoded fusion method, and the corresponding 2D images. Red bounding
boxes are detections, and green bounding boxes denotes the ground truth detections.
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