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Abstract—In recent years, many deep learning models have
been adopted in autonomous driving. At the same time, these
models introduce new vulnerabilities that may compromise the
safety of autonomous vehicles. Specifically, recent studies have
demonstrated that adversarial attacks can cause a significant
decline in detection precision of deep learning-based 3D object
detection models. Although driving safety is the ultimate concern
for autonomous driving, there is no comprehensive study on
the linkage between the performance of deep learning models
and the driving safety of autonomous vehicles under adversarial
attacks. In this paper, we investigate the impact of two primary
types of adversarial attacks, perturbation attacks and patch
attacks, on the driving safety of vision-based autonomous vehicles
rather than the detection precision of deep learning models.
In particular, we consider two state-of-the-art models in vision-
based 3D object detection, Stereo R-CNN and DSGN. To evaluate
driving safety, we propose an end-to-end evaluation framework
with a set of driving safety performance metrics. By analyzing the
results of our extensive evaluation experiments, we find that (1)
the attack’s impact on the driving safety of autonomous vehicles
and the attack’s impact on the precision of 3D object detectors
are decoupled, and (2) the DSGN model demonstrates stronger
robustness to adversarial attacks than the Stereo R-CNN model.
In addition, we further investigate the causes behind the two
findings with an ablation study. The findings of this paper provide
a new perspective to evaluate adversarial attacks and guide the
selection of deep learning models in autonomous driving.

Index Terms—Adversarial attacks, driving safety, 3D object
detection, autonomous driving.

I. INTRODUCTION

OVER the past decade, autonomous driving has gained
significant developments and demonstrated its great

commercial potentials [1], [2]. The commercial potentials have
attracted enormous investment as well as various malicious
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attacks [3], [4], for example, close-proximity sensor attacks,
remote cyberattacks, perturbation attacks, and patch attacks.

Environment perception and other tasks of autonomous
driving systems heavily rely on deep learning models. Re-
searchers have demonstrated that adversarial examples, which
are originally designed to affect general-purpose deep learning
models, can also be used to cause malfunctions in autonomous
driving tasks [5]–[14]. In these studies, researchers usually use
the decline of accuracy, or the erroneous rate increase of the
deep learning models, to measure the effectiveness of attacks.
Amplified by media reports, these attacks are casting cloud
and posing psychological barriers to the broader adoption of
autonomous driving [15].

From the perspective of autonomous driving, however, the
ultimate concern is driving safety. Without a doubt, the inaccu-
rate detection results of a deep learning model in the presence
of attacks may impact driving safety, and in some situations,
misdetection of traffic signs [7] might have disastrous conse-
quence. Nevertheless, driving safety is a combined effort of
many factors in a dynamic environment, and the deteriorated
model performance does not necessarily lead to safety hazards.
The linkage between the performance of a deep learning model
under adversarial attacks and driving safety is not studied
in the literature. In particular, there are no clear answers to
the following questions: 1) Does the precision decline or the
erroneous rate increase of the deep learning models under
attacks represent their robustness in regard to driving safety
of autonomous vehicles? In other words, does a larger decline
in accuracy of an attacked deep learning model indicate a
higher risk of driving safety? Similarly, does a slight decrease
in accuracy of a deep learning model under attacks indicate
mild risk of driving safety? 2) If the answers to the previous
questions are all no, what are the reasons behind?

In this paper, we aim to answer the aforementioned ques-
tions by evaluating the impact of two types of representative
adversarial attacks, perturbation attacks and patch attacks, on
driving safety of vision-based autonomous driving systems,
rather than the accuracy of deep learning models. We also
investigate the reasons causing the decoupling between the
detection precision of adversarial attacks and driving safety.

This study considers vision-based autonomous driving
which mainly relies on stereo cameras for the task of envi-
ronmental sensing. The vision-based object detectors that we
consider in this paper are Stereo R-CNN [16] and DSGN [17],
two state-of-the-art methods in this area.

To facilitate this study, we propose an end-to-end driving
safety evaluation framework with a set of designed driving
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safety performance metrics, where the evaluation framework
can directly take the results of the 3D object detector as
input and outputs the scores of the driving safety performance
metrics as the final assessment.

To implement such an evaluation framework, we are faced
with two nontrivial technical challenges. First, the results
of the 3D object detector only contain static information,
such as position and dimension. Thus, we cannot determine
which objects are moving and which are static. Second, to
realistically generate a planned trajectory for the self-driving
ego-vehicle, real driving constraints, such as speed limits
for different road types and dynamics models for different
vehicles, must be provided to the motion planning module.
Considering that the driving scenarios change dynamically, we
need to select appropriate real driving constraints accordingly
for driving safety assessment.

To tackle the first challenge, we train a CNN-based classifier
with manually labeled ground truth to categorize whether an
object is moving or static. For the second challenge, we train
another classifier with road type labels to classify the road type
of each scenario, so as to select appropriate driving constraints.

To obtain comprehensive experiment results, we apply the
aforementioned two types of adversarial attacks with different
attack intensities in our evaluation framework and measure the
rate that the motion planner successfully finds a trajectory, the
rate of collision occurrence, and the rate that the ego-vehicle
drives safely from the initial position to the goal region. In
the meantime, we also measure the precision changes of the
vision-based 3D object detectors when they are under attacks.
By linking the impact of adversarial attacks on driving safety
and on 3D object detection together, we manage to find the
answers to our motivation questions. The main contributions
of this paper can be summarized as follows.
• We propose an end-to-end driving safety evaluation

framework that directly takes the produced results of
the 3D object detector as input and outputs driving
safety performance scores as the evaluation outcome.
With modular design, each individual module can be
easily replaced so that the framework can be adapted
to evaluate the driving safety of different self-driving
systems threatened by various attacks.

• We conduct extensive experiments and observe that the
changes in object detection precision and the changes in
driving safety performance metrics caused by adversarial
attacks are decoupled. Therefore, the answers to our
motivation questions are all no. And we also observe that
DSGN is more robust than Stereo R-CNN in terms of
driving safety.

• We investigate the reasons behind our answers to those
questions. We find that the reason for the decoupling
is that it is easier for perturbation attacks to mislead
object detectors to detect ghost objects at roadside which
cause little influence on driving safety but huge impact
on detection precision. We also find out that the reason
why DSGN is more robust than Stereo R-CNN is that
the latter is purely based on deep neural network, while
DSGN adopts the Spatial Pyramid Pooling (SPP) in its
architecture which can alleviate the attack effects.

The rest of this paper is organized as follows. In Section II,
we first introduce the studies related to our work. In Sec-
tion III, we briefly introduce the attack model of the two
adversarial attacks studied in this paper. In Section IV, we
elaborate on our proposed end-to-end evaluation framework
and the driving safety performance metrics. In Section V, we
present the experiment design and results. In Section VI, we
investigate the causes of our observations with an ablation
study. Finally, we conclude the paper in Section VII.

II. RELATED WORK

In this section, we review the related work from the per-
spectives of attacks on autonomous driving, vision-based 3D
object detection, and motion planning.

Attacks on Autonomous Driving. A survey of general
vulnerabilities in autonomous driving can be found in [3], [4].
Among all the vulnerabilities, the perturbation attack and the
patch attack are the most dangerous threats of vision-based
autonomous driving systems, since they can directly cause
damages to input images.

Both the perturbation attack and the patch attack fall into
the domain of adversarial attacks. The main idea of adversarial
attacks is to leverage small changes in the input to trigger
significant errors in the output of deep learning models.
According to [18], adversarial attacks can be either universal
(effective to all valid inputs) or input-specific (only effective
to a specific input). There are mainly two categories of
methods to achieve adversarial attacks, namely, optimization-
based methods and fast gradient step method (FGSM)-based
approach. Optimization-based methods can be used for either
universal attacks or input-specific attacks. An example is L-
BFGS proposed by Szegedy et al. [19]. FGSM-based methods
include FGSM [20] and its extensions, such as I-FGSM [21],
MI-FGSM [22], and PGD [23]. These methods are usually
used only for input-specific attacks.

The perturbation attack and the patch attack work in dif-
ferent ways. The perturbation attack usually affects all pixels
in an input image but the changes in pixel values are very
small, while the patch attack only affects a small number
of pixels but the changes in pixel value are larger. Both the
attacks were studied concerning different functional modules
needed in vision-based autonomous driving. For example, the
perturbation attack was studied regarding sign classification
in [7], 2D object detection in [8], semantic segmentation in [9],
[24], and monocular depth estimation in [12], [13], while the
patch attack was studied regarding lane keeping in [5], optical
flow estimation in [6], 2D object detection in [10], [11], and
monocular depth estimation in [13]. None of these studies,
however, focus directly on the attacks’ impact on driving
behavior and driving safety of autonomous vehicles.

Vision-Based 3D Object Detection. Vision-based 3D ob-
ject detection provides a more budget-friendly approach to
perform object detection in 3D space by mainly leveraging
stereo cameras instead of expensive LiDARs. It is the core of
vision-based autonomous driving. Traditional approaches, e.g.,
3DOP [25] and Pseudo-LiDAR [26], first generate a pseudo
point cloud with depth estimation and then perform 3D object
detection with similar methods used in LiDAR-based 3D



3

object detection. As a result, they are usually not comparable
to LiDAR-based methods in terms of accuracy and efficiency.
Different from traditional approaches, Stereo R-CNN [16]
and DSGN [17] are the two leading methods in this area.
The network of Stereo R-CNN consists of a Region Proposal
Network (RPN) and a regression part. The 2D bounding box
candidates generated by the RPN are fed to the regression
part where keypoints of 3D bounding boxes are predicted.
The network of DSGN includes a single-stage pipeline which
exacts pixel-level features for stereo matching and high-level
features for object recognition. Both methods can achieve
comparable performance to LiDAR-based methods.

Motion Planning. Motion planning is a key task for au-
tonomous vehicles. Given an initial vehicle state, a goal state
region, a cost function, and vehicle dynamics, motion planning
finds collision-free trajectories. Currently, sampling-based mo-
tion planning algorithms are the mainstream methods. They
can be viewed as a discrete planner, such as RRT [27], greedy
BFS, and A* [28], in combination with a C-space sampling
scheme.

III. ATTACK MODELS

We assess the impact of two types of adversarial attacks,
perturbation attacks and patch attacks, on driving safety. Here,
we briefly introduce the attack models.

Perturbation Attack. The goal of this type of adversarial
attacks is to make the deep learning model dysfunctional by
adding small changes to each pixel in the image that are
imperceptible to human eyes. With prior knowledge of the
deep learning model, attackers can launch perturbation attacks
by tapping into the self-driving system and perturbing camera
images. We consider the method of PGD [23] to achieve input-
specific attacks. Consider a perturbation δper and an image
pair (Il, Ir), where δper has the same dimension as Il and
Ir. Let the initial perturbed image pair (Ĩper

l,0 , Ĩ
per
r,0) = (Il, Ir).

The attack is carried out by updating the perturbation using
the projected loss gradient of the 3D object detector through
multiple iterations with

δper
n = Clipε{α× sign(∇(Il,Ir)L(Oθ(Ĩ

per
l,n, Ĩ

per
r,n), btrue))} (1)

and
(Ĩper
l,n+1, Ĩ

per
r,n+1) = (Ĩper

l,n + δper
n , Ĩper

r,n + δper
n ) (2)

where Clipε{·} ensures that the value is within [−ε, ε], α is the
parameter that controls the attack intensity, sign(·) denotes the
sign function, Oθ(·, ·) represents the vision-based 3D object
detector parametrized by θ, L(·, ·) is the loss function of
Oθ(·, ·), btrue is the ground truth label paired with (Il, Ir), and
0 6 n 6 N − 1. For convenience, we denote the perturbation
attack as (Ĩper

l , Ĩper
r ) = Aper(Il, Ir, b

true, ε, α,N).
Patch Attack. The patch attack is designed to model the

real-world poster-printing attack in [7]. In the context of
vision-based 3D object detection, a patch attack is launched
to mislead the detector so that it detects ghost objects by
including the patch in the view of the image. With prior
knowledge of the deep learning model, attackers can train a
patch offline, print it out, and put the physical patch inside
the view of cameras to launch the attack. For example, the

attacker can place the patch at the roadside where the vision-
based self-driving car passes by. Since a real-world 3D point
appears at different positions in two stereo images, we consider
a patch δpat that is pasted onto Il at locl and onto Ir at locr,
where (locl, locr) ∈ L, L represents a set of random position
pairs. Let λlocl,locr ∈ Λ be the disparity between locl and locr,
where Λ denotes a set of valid disparities in the physical world.
Let τ ∈ T be a transformation that can be applied to δpat,
where T includes rotations. Then, the patched image pair can
be represented as (Ĩpat

l , Ĩpat
r ) = Apat(Il, Ir, δ

pat, locl, locr, τ).
To implement this attack, the patch is optimized as

argmin
δpat

E(Il,Ir)∼I,(locl,locr)∼L,τ∼T L(Oθ(Ĩ
pat
l , Ĩpat

r ), b∗), (3)

where b∗ denotes the predefined 3D bounding boxes used for
misleading the object detector and serves as the optimization
target here.

IV. END-TO-END DRIVING SAFETY EVALUATION
FRAMEWORK

As discussed in Section II, many previous studies only
showed that deep learning models of autonomous driving can
be compromised by adversarial attacks, but they did not sys-
tematically assess the attack impact on driving safety. Our goal
is to answer the questions raised in Section I by investigating
the impact of perturbation attacks and patch attacks on driving
safety of vision-based autonomous vehicles. This investigation
considers not only the performance of the attacked deep
learning models but also their impact on the overall safety,
which is a combined effect of different functional modules
involved in autonomous driving.

To this end, we design an end-to-end driving safety evalua-
tion framework. End-to-end means that our system directly
takes 3D object detection results as input and outputs the
driving safety scores. Moreover, our evaluation framework
adopts a modular design, so that each module can be easily
replaced with other methods to assess the driving safety of
different autonomous driving systems. Note that the existing
simulators, such as Baidu Apollo [29] and CARLA [30], either
have a low level of customization or are not compatible with
real autonomous driving datasets. Therefore, we implement
our own evaluation framework with real autonomous driving
dataset to evaluate the impact of adversarial attacks on driv-
ing safety. In this section, we first introduce our evaluation
framework model for vision-based autonomous driving and
the driving safety metrics, then elaborate on the framework
implementation details.

A. Framework Model

Our evaluation framework works along with the data flow
of vision-based autonomous driving systems. In Figure 1,
the black lines represent the data flow of our evaluation
framework, while the red lines are for the data flow of the au-
tonomous driving system. Usually inside the vision-based au-
tonomous vehicle, a pair of stereo images (Il, Ir ∈ Rh×w×3) is
first fed as the input to the 3D object detection module Oθ(·, ·),
which is parameterized by θ and generates detected objects in
3D bounding boxes b (denoted as b = Oθ(Il, Ir)) as the output.
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Fig. 1. The end-to-end driving safety evaluation framework.

Next, the bounding boxes b along with some extra information
are passed to the the motion planning module M(·). At last,
the vehicle control units execute the driving motion orders
from the motion planning module. As depicted in Figure 1,
our proposed end-to-end driving safety evaluation framework
directly takes the detected objects of Oθ(·, ·) as input, uses
the same motion planning module of the autonomous vehicle,
and outputs scores for driving safety metrics. This modular
design makes it possible for our evaluation framework to be
adopted by other self-driving systems which have different
implementation of the aforementioned modules.

As described in Section I, two main technical challenges
need to be addressed after the object detection results are fed
into our evaluation framework. First, the 3D bounding boxes b
as the object detection results only contain static information,
i.e., object category, box dimensions, box center position in 3D
space, and the confidence score. Base on the static information
of one frame of data, we cannot distinguish between moving
objects and static objects. However, the subsequent motion
planning module requires dynamic information of objects as
part of its input. Second, to realistically produce planned
trajectory for the self-driving vehicle, driving constraints,
including speed limits for different road types and dynamics
constraints for different moving vehicles (acceleration, jerk,
energy, etc.), must be considered to comply with the real
driving scenarios. In addition, as the real driving scenarios can
change dynamically, we must choose appropriate real driving
constraints accordingly for driving safety evaluation.

To tackle the first challenge, we train a CNN-based moving
object classifier C(·, ·, ·) to distinguish between dynamic and
static objects by leveraging continuous frames of image data.
We manually label each object with the ground truth indicating
whether this object is moving or not. By doing this, we as-
sociate the object detection results with dynamic information.
We denote this process as ~b = C(b, Il, Ir).

To address the second challenge, we train another CNN-
based model S(·, ·) with road type labels as the driving
constraint selector, so that it can classify the road type of
driving scenarios and select proper real driving constraints for

the evaluation. We denote this part as (s0, r, d) = S(Il, Ir),
where s0 is the initial vehicle state, r is the allowed speed
range, and d represents the vehicle dynamics. In this paper,
we define a vehicle state s := (p, v, ϕ, ω) as a combination of
position p, velocity v, orientation ϕ, and steering angle ω at a
specific moment. Note that both the two aforementioned mod-
els, C(·, ·, ·) and S(·, ·), are trained on KITTI raw dataset [31].

Then, together with goal region g and cost function c,
we combine the processed results of both the moving object
classifier and the driving constraint selector to form a planning
scenario. After that, the scenario is fed to the motion planning
module M(·) that outputs a temporal sequence of planned
vehicle states {st} (a trajectory with planned driving mo-
tions), which is denoted as {st} = M(~b, s0, r, g, c, d), where
1 6 t 6 T .

The final assessment of driving safety is conducted by the
evaluation module based on processing a large number of
driving scenarios. Specifically, the evaluation module incor-
porates the planned trajectory into the planning scenario and
detects collision for each driving scenario in the dataset. Then,
it generates driving safety performance scores based on all
detected collisions. Note that we refer to a collision as the
physical contact of objects. In this paper, we evaluate driving
safety on the KITTI object detection dataset [32].

Next, we introduce the driving safety performance metrics
and present the details of the framework implementation.

B. Driving Safety Performance Metrics

To evaluate the driving safety of the vision-based au-
tonomous driving system in a quantitative manner, we define
a set of driving safety performance metrics as follows.

• Successful planning rate. In some scenarios, the motion
planning module may not be able to generate a trajectory
solution, which imposes a risk in driving safety. Thus,
we define the successful planning rate as msuc =

ktrj
kdts

,
where kdts is the total number of scenarios in a dataset,
and ktrj is the number of scenarios in that dataset
where a trajectory can be successfully generated, no
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(a) Clean image input. (b) Ground truth of object detection.

(c) Detection results of DSGN without attack. (d) Detection results of DSGN under attack.

(e) Detection results of Stereo R-CNN without attack. (f) Detection results of Stereo R-CNN under attack.

(g) Clean image input. (h) Ground truth of object detection.

(i) Detection results of DSGN without attack. (j) Detection results of DSGN under attack.

(k) Detection results of Stereo R-CNN without attack. (l) Detection results of Stereo R-CNN under attack.

Fig. 2. When there is no attack, both Stereo R-CNN and DSGN can detect objects accurately as shown in (c), (e), (i), and (k). When the perturbation attack
is launched, the two models produce erroneous object detection results including inaccurate detection of real objects in (d), (j), and false detection of ghost
objects in (f), (l).

matter whether it is collision-free or not. For the sake of
simplicity, this metric is referred to as the success rate.

• Collision rate. We define the collision rate, mcls, as
the percentage of scenarios in all successfully planned
trajectories where a collision occurs. Let mcls = kcls

ktrj
,

where kcls is the number of scenarios with collision
occurrence. Collision rate approximately reflects the col-
lision probability under different levels of threats.

• Safe driving rate. The safe driving rate, msaf , is defined
as the percentage of scenarios in a dataset where a
collision-free trajectory can be produced by the motion
planning module. We denote it as msaf =

ktrj−kcls
kdts

=

msuc− kcls
ktrj

ktrj
kdts

= msuc−mclsmsuc = (1−mcls)msuc.
In this paper, we only focus on fatal driving risks when

referring to the driving safety. By measuring successful plan-
ning rate and collision rate, we capture the two most risky
driving scenarios in autonomous driving, i.e., the failure of
path planning and collision.

Note that successful planning rate and collision rate are also
common performance metrics measuring the quality of motion
planning. Furthermore, safe driving rate is jointly determined
by both successful planning rate and collision rate, which is a
more direct measure of driving safety.

C. Implementation

To implement this end-to-end driving safety evaluation
framework for vision-based autonomous driving, we adopt two
pre-trained models for the object detection module, namely,
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(d) Stereo R-CNN, α = 1

Fig. 3. Average precision for 3D object detection under the perturbation attack.
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(a) DSGN, α = 0.4
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(b) Stereo R-CNN, α = 0.4
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(c) DSGN, α = 1
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(d) Stereo R-CNN, α = 1

Fig. 4. Driving safety performance metrics under the perturbation attack.

Stereo R-CNN [16] and DSGN [17], which are currently
two state-of-the-art methods in the area of vision-based 3D
object detection. As for the motion planning module and
the evaluation module, we use CommonRoad [33] as the
framework and leverage the built-in A* [28] with sampled
motion primitives as the motion planning method.

To implement the moving object classifier, we extract in to-
tal 600 real driving scenarios from the KITTI raw dataset [31]
and manually label each object in each driving scenario with
a moving/static property. We use 500 scenarios for training
and 100 scenarios for validation. To determine whether an
object is moving or not in a driving scenario, we refer to the
previous and the subsequent image frames of that scenario.
Though it is easy for human to judge the moving object from
sequential frames, two people are assigned to manually label
the scenarios independently in order to eliminate personal bias

or errors in manual labelling. The independently produced
labels are checked together for consistency, and no inconsistent
labelling is found. We adopt the 16-layer VGG net [34] as the
core network of the moving object classifier and replace its
fully connected layers, i.e., fc6, fc7, and fc8, with a flatten
layer, a new fully connected layer with a dropout layer and
ReLU activation function, and another new fully connected
layer with a dropout layer and a sigmoid activation function,
respectively, to make sure that there is only one output score
to indicate the probability of a moving object. The validation
results suggest that the accuracy of the trained moving object
classifier is 98.31%.

To implement the driving constraint selector, we also lever-
age the KITTI raw dataset [31] to train the model so that
it can classify the road type of a scenario. Specifically, we
divide the dataset into two subsets, i.e., street and highway.
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TABLE I
DRIVING SAFETY PERFORMANCE METRICS UNDER THE PERTURBATION ATTACK (α = 0.4)

Model DSGN Stereo R-CNN
Iteration Unattacked 1 2 3 4 Unattacked 1 2 3 4

Success rate (%)
Left 89.6 89.6 89.5 89.3 89.5 89.8 89.8 90.4 90.0 88.8

Straight 96.5 96.7 96.7 96.7 96.9 96.4 96.0 95.1 95.1 94.5
Right 84.4 84.2 84.4 84.6 84.8 84.9 85.3 84.4 85.9 85.2

Collision rate (%)
Left 2.2 2.2 2.4 2.6 2.8 3.1 2.7 3.7 4.1 3.7

Straight 0.7 0.7 0.7 0.9 1.1 1.1 1.1 0.9 1.3 1.7
Right 1.7 2.3 2.7 3.6 3.8 3.3 3.5 3.5 5.4 7.2

Safe driving rate (%)
Left 87.7 87.7 87.3 86.9 86.9 87.0 87.4 87.0 86.3 85.4

Straight 95.8 96.0 96.0 95.8 95.8 95.3 94.9 94.1 93.8 92.9
Right 83.0 82.2 82.0 81.5 81.5 82.1 82.3 81.4 81.2 79.1

TABLE II
DRIVING SAFETY PERFORMANCE METRICS UNDER THE PERTURBATION ATTACK (α = 1)

Model DSGN Stereo R-CNN
Iteration Unattacked 1 2 3 4 Unattacked 1 2 3 4

Success rate (%)
Left 89.6 90.0 89.3 89.8 89.5 89.8 90.2 88.4 89.8 84.6

Straight 96.5 96.7 96.5 96.5 96.9 96.4 95.8 94.2 95.5 90.6
Right 84.4 84.4 84.4 84.6 84.8 84.9 85.7 85.1 86.7 82.4

Collision rate (%)
Left 2.2 2.6 2.8 3.4 3.4 3.1 3.3 3.2 4.7 6.4

Straight 0.7 0.7 0.9 1.3 1.3 1.1 1.5 1.2 2.1 3.5
Right 1.7 3.2 3.8 5.3 5.9 3.3 4.1 5.1 8.6 11.3

Safe driving rate (%)
Left 87.7 87.7 86.7 86.7 86.4 87.0 87.2 85.5 85.5 79.2

Straight 95.8 96.0 95.6 92.9 95.6 95.3 94.3 93.1 93.4 87.4
Right 83.0 81.7 81.1 80.1 79.7 82.1 82.1 80.7 79.2 73.0

The street subset consists of city and residential scenarios
where the traffic speed is relatively low, while the highway
subset contains highway scenarios in which vehicles move
much faster. Accordingly, we pre-define two sets of mo-
tion primitives for two road types so that the selector can
pick the motion primitive with appropriate speed ranges and
steering angle ranges after classifying the road type. The
selector also chooses the dynamics constraints for moving
vehicles predicted by the moving object classifier. The network
architecture of the driving constraint selector consists of 5
convolution layers connected by max-pooling layers and 1
fully connected layer with dropout. Both convolution layers
and the fully connected layer use ReLU as the activation
function. After excluding the scenarios without cars, we select
444 scenarios as the training dataset and 112 scenarios as
the validation dataset. The validation result indicates that the
accuracy of the driving constraint selector achieves 94.64%.

V. EXPERIMENTS

we conduct extensive experiments to investigate the impact
of perturbation attacks and patch attacks on driving safety of
vision-based autonomous vehicles. We first introduce the com-
mon setup for all experiments, then elaborate on the specific
settings for each attack experiment and present corresponding
evaluation results. Finally, we summarize our findings at the
end of this section.

A. Common Setup

In this paper, we conduct all experiments by applying the
two types of adversarial attacks with different settings in our
driving safety evaluation framework. Specifically, the evalua-
tion framework includes two object detection modules, Stereo
R-CNN [16] and DSGN [17]. In order to assess the impact

comprehensively, we gradually increase the attack intensity
by changing the attack settings in fine-grained steps. For the
same purpose, we also consider three driving intentions of the
ego-vehicle for each scenario when planning the trajectory,
namely, changing to left lane, changing to right lane, and
keeping lane, which are abbreviated as left, right, and straight,
respectively. For these three cases, the initial position of
the ego-vehicle is the same and the goal region is located
15 meters away from the initial position but within three
different adjacent lanes. Moreover, we randomly assign an
initial speed within the selected speed range to each moving
vehicle, including the ego-car. Specifically, the initial speed
for moving vehicles in street scenarios is randomly assigned
within the range of [22, 29] km/h, considering the 30 km/h
speed limit in German cities, campus and residential areas.
The initial speed in highway scenarios is randomly assigned
within the range of [40, 47] km/h, concerning the 50 km/h
speed limit of built-up roads in Germany. For each attack,
after the framework processes all the scenarios and generates
the motion planning results, it assesses the attack impact on
the performance metrics of driving safety as well as on the
accuracy of 3D object detector. By linking these two attack
impacts together, we manage to obtain evaluation results that
help answer the questions raised in Section I. The models of
Stereo R-CNN [16] and DSGN [17] are pretrained with 3712
data points from the KITTI object detection dataset [32]. For
each experiment setting, we test 600 real driving scenarios.
The platform that we use is an Ubuntu 18.04 server equipped
with an Nvidia Tesla V100 GPU.

In our experiments, the evaluation of driving safety is based
on the trajectory produced by the motion planning module
and measured by the driving safety performance metrics. In
terms of evaluating the accuracy of the vision-based 3D object
detector, we adopt the KITTI object detection benchmark that
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(a) Clean image input. (b) Ground truth of object detection.

(c) Detection results of DSGN without attack. (d) Detection results of DSGN under attack.

(e) Detection results of Stereo R-CNN without attack. (f) Detection results of Stereo R-CNN under attack.

(g) Clean image input. (h) Ground truth of object detection.

(i) Detection results of DSGN without attack. (j) Detection results of DSGN under attack.

(k) Detection results of Stereo R-CNN without attack. (l) Detection results of Stereo R-CNN under attack.

Fig. 5. The patch attack triggers 3D object detectors to generate ghost bounding boxes at in the area of the patch as shown in (f) and (l). It has little
influence on the detection of the objects away from the patch.

tests the detector with a three-level standard, namely, easy,
moderate, and hard [32]. We follow the standard to measure
the average precision (AP) of the detector with Intersection
over Union (IoU) larger than 70%.

B. Perturbation Attack

In order to perform the perturbation attack against au-
tonomous driving systems at various intensities, we adjust two
parameters α and n in Eqn. (1). To ensure that the perturbation
is imperceivable to human eyes, their values usually should
be set as small as possible. Specifically, we set the value of α
as 0.4 and 1, to represent medium to high attack intensities,
respectively. The number of iterations n changes from 1 to
4 accordingly, so that the modification on image pixel values

is constrained within the range of [0.4, 4]. We note that even
the attack with the lowest attack intensity, i.e., α = 0.4 and
n = 1, can cause significant decline in the accuracy of 3D
object detectors. Moreover, the produced perturbation and the
input stereo images have the same dimension.

Evaluation. The effect of the perturbation attack in some
driving scenarios is shown in Figure 2 where we can see
that the attack causes inaccurate detection of real objects
and false detection of ghost objects. We present the impact
of the perturbation attack with different settings on average
precision of 3D object detection and on driving safety metrics
in Figure 3 and Figure 4, respectively. The numerical results
of driving safety scores can be found in Table I and Table II.
When the number of iterations n is 0, it indicates that there
is no attack applied. From Figure 3, we can observe that
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TABLE III
AVERAGE PRECISION FOR 3D OBJECT DETECTION UNDER PATCH ATTACK

Model DSGN Stereo R-CNN

Scenario Unattacked Random Specific Attack Unattacked Random Specific Attack
Attack Left Straight Right Attack Left Straight Right

3D easy 70.94 63.85 65.72 64.96 64.87 56.47 53.17 48.14 47.82 50.07
Detection moderate 52.98 48.20 51.47 50.77 51.63 38.20 37.07 36.27 35.23 38.02
AP (%) hard 47.29 44.30 46.80 46.15 46.48 32.66 31.88 31.21 30.60 32.45

TABLE IV
DRIVING SAFETY PERFORMANCE METRICS UNDER THE PATCH ATTACK

Model DSGN Stereo R-CNN
Scenario Unattacked Random Attack Specific Attack Unattacked Random Attack Specific Attack

Success rate(%)
Left 89.6 90.0 90.0 89.8 70.3 83.7

Straight 96.5 96.5 96.7 96.4 81.2 57.5
Right 84.4 84.6 84.8 84.9 68.7 74.4

Collision rate(%)
Left 2.2 2.6 2.8 3.1 1.9 2.1

Straight 0.7 0.7 0.9 1.1 1.4 4.7
Right 1.7 2.3 2.1 3.3 3.9 4.2

Safe driving rate(%)
Left 87.7 87.7 87.5 87.0 68.9 81.9

Straight 95.8 95.8 95.8 95.3 80.1 54.7
Right 83.0 82.6 83.0 82.1 65.9 71.2

TABLE V
DRIVING SAFETY PERFORMANCE METRICS OF STEREO R-CNN UNDER THE PATCH ATTACK WITH VARIOUS INTENTIONS

Specific attack Random attack
— Same intentions1 Different intentions2 Unattacked

Success rate (%) 71.9 76.2 91.6 90.4
Collision rate (%) 3.5 2.3 1.5 2.4

Safe driving rate (%) 69.3 74.4 90.1 88.1
1 ”Same intentions” refers to cases where the attack intention and the driving intention are the same.
2 ”Different intentions” refers to cases where the attack intention differs from the driving intention.

TABLE VI
SAFE DRIVING RATE USING DIFFERENT PLANNING

ALGORITHMS

Planning algorithm GBFS A*
Scenario Ground Truth

Safe driving rate (%)
Left 87.9 89.7

Straight 98.0 98.0
Right 82.3 85.2

with the enhanced attack intensity by increasing α and n,
the average precision of both object detection models drops
significantly, while the driving safety metrics only show very
small changes. Take DSGN as an example. When α is 0.4
and n is increased from 0 (no attack) to 1, the AP declines by
more than half for all three levels of the benchmark standard,
i.e., from 70.94% to 21.99% for the category of AP easy,
from 52.98% to 14.45% for the category of AP moderate, and
from 47.29% to 13.96% for the category of AP hard. When
n is 3, the AP of DSGN almost reaches 0. However, in the
meantime, the driving safety performance metrics in Figure 4
barely change for all three intention cases (e.g., collision rate
is only changed from 1.7% to 3.6% for the case of changing
to right lane). When α = 1 and n is increased from 0 (no
attack) to 4, the AP of DSGN drops even more significantly,
but the driving safety metrics only demonstrate slightly larger
changes than that when α = 0.4 (e.g., the safe driving rate
drops by 0.8% when α = 0.4 and by 1.3% when α = 1
for the case of changing to left lane). The experiment results
clearly indicate that the perturbation attack can dramatically

affect the performance of 3D object detection methods, but
does not have much influence on the driving safety. In other
words, a larger precision decline of the vision-based 3D object
detectors under the perturbation attack does not indicate higher
risk of driving safety.

Moreover, by comparing DSGN and Stereo R-CNN in terms
of driving safety under perturbation attacks, we can observe
that the changes in driving safety metrics for Stereo R-CNN
tend to be larger than the changes for DSGN when both of
them are tested in the same driving intention scenarios and at
the same intensity. Therefore, Stereo R-CNN is more prone to
perturbation attacks than DSGN in regard to driving safety.

C. Patch Attack

Different from perturbation attacks, the size of a patch in a
patch attack is much smaller than the size of an input image. In
our patch attack experiments, the radius of the patch is limited
to 38 pixels. Here, the patch attack is launched as a white-box
attack, which means that the patch is trained for Stereo R-
CNN and DSGN, respectively. Specifically, we train the patch
according to Eqn. 2 by placing the patch at a random position
in stereo image pair and setting b∗ in Eqn. 3 accordingly for
each training scenario. To ensure that the patch for Stereo R-
CNN and the patch for DSGN are equally optimized, we use
the same learning step size and the same number of epochs
when training patches.

We design two attack approaches, namely, random attack
and specific attack. Random attacks are to place the trained
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TABLE VII
SAFE DRIVING RATE WITH DIFFERENT INPUTS

Model — DSGN Stereo R-CNN

Scenario Ground
Truth Unattacked Perturbation

Attack
Patch
Attack Unattacked Perturbation

Attack
Patch
Attack

Safe driving rate (%)
Left 89.7 87.7 86.4 87.7 87.0 79.2 68.9

Straight 98.0 95.8 95.6 95.8 95.3 87.4 80.1
Right 85.2 83.0 79.7 82.6 82.1 73.0 65.9

patch at a random position within the entire image no matter
which driving intention case it is. In other words, the attack
intention may or may not be consistent with the driving
intention in random attacks. Specific attacks are also to place
the patch randomly but within a certain region of the image,
depending on the driving intention case, e.g., if the driving
intention is changing to right lane, then the patch is placed
in the right part of the image. In other words, the attack
intention is always consistent with the driving intention in
specific attacks. By designing two attack approaches, we can
create different attack intensities for patch attacks. Specifically,
the attack intensity of random attacks is lower than that of
specific attacks.

Evaluation. The performance of patch attacks in some
driving scenarios is shown in Figure 5 in which we can observe
that patch attacks cause false detection of ghost objects. The
impact of patch attacks on object detection and driving safety
are shown in Table III and Table IV respectively. From the
tables, we can observe that, when different attack approaches
are applied, the average precision of both object detection
models declines slightly, while some of the driving safety
metrics degrade significantly. For example, when random
patch attacks are applied to the Stereo R-CNN model, AP
declines slightly for all three levels of the benchmark standard,
i.e., from 56.47% to 53.17% for the case of AP easy, from
38.20% to 37.07% for the case of AP moderate, and 32.66%
from to 31.88% for the case of AP hard. However, the driving
safety performance metrics of Stereo R-CNN have a relatively
larger drop under random patch attacks (e.g., safe driving rate
drops from 95.3% to 80.1% for the case of keeping lane).
At the same time, for specific patch attacks, Stereo R-CNN
shows the similar average precision decline which is only
within the range of [0.21%, 8.65%], while significant driving
safety performance degradation can be observed (e.g., the safe
driving rate decreases to half for the case of keeping lane). The
experiment results suggest that a slight precision decline of the
3D object detectors under patch attacks does not indicate mild
risk of driving safety.

Since the driving safety performance of Stereo R-CNN
can be significantly affected by patch attacks, we further
investigate the performance under the attacks where the at-
tack intention is the same as the driving intention, and the
attacks where the attack intention is different from the driving
intention. The results are listed in Table V. From Table V,
we can see that the driving safety performance under the
attacks where the driving intention and the attack intention are
different is very similar to that in unattacked scenarios, and
the performance under the attacks where the attack intention
is the same as the driving intention is very close to that in

specific attack scenarios.
Furthermore, the DSGN model again shows its much better

robustness in object detection and driving safety under patch
attacks. We can observe that, even under the well-designed
specific patch attacks, DSGN’s average precision decline is
only less than 6%, and the driving safety performance metrics
almost remain unchanged, while Stereo R-CNN performs
worse under both random patch attacks and specific patch
attacks.

D. Attack Impact Demonstration

To demonstrate that the performance of different models
under different attacks is mainly caused by adversarial attacks,
not by the motion planning algorithms, we conduct two
experiments.

We first evaluate the performance of the motion planning
module using different inputs and then calculating the safe
driving rates in different scenarios. Specifically, we first use
the ground truth data of 3D object detection as the inputs
to evaluate two popular motion planning algorithms, A* and
Greedy-BFS, so as to show the impact of the motion planning
module on the driving safety. The experimental results are
summarized in Table VI. From Table VI, we can first observe
that, when ground truth data are used, the A* planning
algorithm can achieve the safe driving rates 89.7%, 98.0%, and
85.2% for the three driving intention scenarios, respectively,
while the Greedy-BFS algorithm can achieve the safe driving
rates 87.9%, 98.0%, and 82.3% for the three driving intentions
scenarios, respectively. The performance of A* and the perfor-
mance of the Greedy-BFS are very close. In other words, the
performance variance demonstrated by DSGN and Stereo R-
CNN under adversarial attacks is irrelevant to the selection of
the motion planning algorithm. Since the performance of A* is
slightly better than that of Greedy-BFS, we select A* as the
motion planning algorithm for our driving safety evaluation
framework.

We then use detection data without attacks (i.e., unattacked)
and detection data under two types of attacks to demonstrate
the impact of detection module and adversarial attacks on
the driving safety. The results are shown in Table VII. From
Table VII, we can observe that the safe driving rates produced
by the detection data without attacks are slightly smaller than
the safe driving rates when the ground truth data are used
as inputs. This slight difference is caused by the accuracy of
the two models. Finally, compared with the safe driving rates
when the inputs are unattacked detection data, the safe driv-
ing rates under adversarial attacks are significantly declined
in all driving intention scenarios. Since all experiments are
conducted using the same motion planning algorithm, we can



11

(a) No attack. (b) Attack applied. (c) Attack applied and texture of side area replaced.

Fig. 6. Results of the texture replacement experiment for Stereo R-CNN.

(a) No attack. (b) Attack applied. (c) Attack applied and texture of side area replaced.

Fig. 7. Results of the texture replacement experiment for DSGN.

conclude that the declines in the driving safety performance
metrics are primarily caused by adversarial attacks.

E. Findings

To briefly summarize, the findings from the experiments of
perturbation attacks and patch attacks are listed as follows:
• A larger precision decline of the attacked vision-based

object detectors does not necessarily indicate a higher
risk of driving safety. Similarly, a slight precision decline
of the vision-based object detectors under attacks does
not necessarily indicate a small risk of driving safety,
either. Hence, the precision decline or the erroneous rate
increase of the vision-based object detectors under attacks
cannot represent their robustness with respect to driving
safety of autonomous vehicles.

• Stereo R-CNN is less robust than DSGN in terms of
driving safety and detection accuracy when the attacks
launched on them are at the same intensity level. Hence,
DSGN is a better selection of the vision-based 3D object
detection for its stronger robustness and higher detection
precision.

In terms of these two findings, we further design more
experiments to explain the real causes behind them in the next
section.

VI. ABLATION STUDY

In this section, we first investigate the reason of the decou-
pling between the precision of 3D object detectors and the
driving safety performance metrics under adversarial attacks.
Second, we investigate the reason why the DSGN model is
more robust than the Stereo R-CNN model.

A. The Cause of the Decoupling between the Precision of 3D
Object Detectors and Driving Safety under Adversarial Attacks

From the experiments in Section V, we observe that per-
turbation attacks cause a significant precision decline in 3D
object detection, but only a slight change in driving safety
performance. Patch attacks cause a slight decline in 3D object

detection precision, but a relatively significant performance
degradation in driving safety. To figure out the reasons beneath
these results, we take a closer look at the detection results of
the attacked and unattacked 3D object detectors and compare
them accordingly.

The reasons for the decoupling caused by patch attacks are
relatively straightforward. First, we notice that the affected
area of patch attacks is limited to the patch itself where
the patch is usually quite small in order to make it difficult
to be detected. Thus, patch attacks can only trigger the
object detectors to produce a very small number of ghost
3D bounding boxes inside the patch. This is the reason why
the object detection precision does not show a significant
decline when detectors are under patch attacks. Second, since
the adversarial patch is randomly placed in driving scenarios,
the resulted ghost 3D bounding boxes have a fair chance
to appear on the road surface and block the way of the
ego-vehicle, which directly leads to noticeably driving safety
performance degradation. These two reasons together explain
the decoupling between the precision of 3D object detectors
and driving safety under patch attacks. In the rest of this
section, we mainly focus on investigating the reasons for the
decoupling caused by perturbation attacks.

Apart from the fact that the perturbation attacks cause
slight drifts of 3D bounding boxes of real objects which are
originally produced accurately when no attack is launched, the
most significant consequence of a perturbation attack is that
it triggers the object detectors to produce a lot of ghost 3D
bounding boxes which do not circle any specific or meaningful
object inside. In particular, almost all ghost boxes appear in
the side areas of a road instead of on the surface of a road.
Since the optimal trajectory generated by the motion planner
most likely will not traverse the side areas of a road, the ghost
objects will not affect the trajectory generated by the motion
planner. In other words, the trajectories generated before
and after perturbation attacks are essentially the same. Thus,
driving safety is not affected dramatically by permutation
attacks.

We further investigate why the ghost 3D bounding boxes
caused by perturbation attacks tend to appear in the side
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Input conv1 conv2 conv3 conv4 conv5 conv6 upsample1smooth1 smooth2 smooth3 maxpool1

Input conv1 conv2 conv3 conv4 conv5 branch1 branch2 branch3 branch4 fusion1 fusion2
Fig. 8. Visualization of the feature maps of Stereo R-CNN (the 1st row) and DSGN (the 2nd row) from shallow to deeper layers.

areas of a road. After inspecting the positions where ghost
bounding boxes appear in a large number of driving scenarios,
we hypothesize that the difference in the texture complexity
between the side areas of a road and the road surface may be
the cause of this. The reason is that the texture of the road
surface is more regular than the texture of the side areas of a
road. Thus, it takes more “efforts” for perturbation attacks to
change the pixel values to generate ghost boxes on the road
surface than that in the side areas of a road.

In order to validate our hypothesis, we design a texture
replacement experiment. Specifically, for a driving scenario in
which vision-based 3D object detectors under a perturbation
attack produce ghost 3D bounding boxes in the side areas of a
road, we replace the texture of the side areas with the texture
of the road surface, then feed this modified driving scenario to
the attacked object detectors and check the detection results.
If our hypothesis is correct, we shall expect that the attacked
object detectors do not produce any ghost boxes in the side
areas of a road for the modified driving scenario.

The results of the texture replacement experiments are
shown in Figure 6 for the Stereo R-CNN model and in Figure 7
for the DSGN model. The attack setting of the perturbation
attack applied here is set to be α = 1 and n = 4 in Eqn. (1).
From the figures, we can observe that both 3D object detectors
can detect the object accurately when there is no perturbation
attack applied (Figure 6(a), 7(a)), and ghost 3D bounding
boxes appear in the side areas of a road when the perturbation
attack is launched on the same driving scenario (Figure 6(b),
7(b)). More importantly, after we replace the texture of side
area of road with the texture of road surface (Figure 6(c), 7(c)),
no more ghost boxes are produced in the side area of the road
by the 3D object detectors, which matches our expectation.
Hence, the texture replacement experiment results validate
our hypothesis that the difference in the texture complexity
between the side areas of a road and the road surface leads to
the decoupling between the precision of 3D object detectors
and the driving safety performance metrics when the 3D object
detectors are attacked.

B. The Cause of Difference in Robustness

The experiment results in Section V indicate that DSGN
is more robust than Stereo R-CNN in terms of driving safety
and object detection when they are under adversarial attacks.
Especially, when patch attacks are launched, DSGN is more
robust than Stereo R-CNN.

To better understand the cause of such a difference in
robustness, we conduct a contrast experiment by implementing
the black-box patch attack where instead of training a patch
for each model separately, we learn a patch p that is jointly
optimized for both the DSGN model and the Stereo R-CNN
model using Eqn. (2). Thus, the patch is capable of attacking
both models. To conduct this experiment, we also generate an
image I with uniformly distributed random noise and paste
the patch p on I to form the attacked input image Ĩ . We
then feed the two input images into the models to observe the
intermediate results produced by their network architectures.
In Figure 8, we visualize the difference between corresponding
intermediate feature maps generated from I and Ĩ for both
models respectively. In other words, the feature map Fk in
Figure 8 refers to the average norm of the difference between
the k-th layer output with an attack applied and the k-th layer
output without any attack. For each model, we inspect the
intermediate feature map of layers from shallow to deep in
the feature extraction part of its network architecture. Each
feature map is cropped so that only the central part is used
for the propose of demonstration.

It is the spatial propagation of the patch activation area in
feature maps of a model that implies the robustness of the
model to patch attacks. Specifically, if the patch activation area
in feature maps propagates along the data flow direction of the
network architecture, then the network architecture amplifies
the impact of patch attacks on the model, suggesting weak
robustness of the model to patch attacks. In contrast, if the
patch activation area in feature maps does not propagate or
even contracts along the data flow, then the network architec-
ture of the model is more resilient to patch attacks, indicating
stronger robustness of the model to adversarial patches.

In the first row of Figure 8, we show how the patch
activation area propagates layer by layer in the Stereo R-
CNN model. In the first few convolution layers (conv<1,
2, 3>), the patch activation area is bounded by the original
region. However, starting from the last two layers of the feature
extractor (conv<4, 5>), we observe that the activation area
gradually propagates as we move on to deeper layers. After the
maxpool1 layer, the patch activation area propagates to almost
the entire cropped image. Since the patch activation area keeps
propagating through the network architecture, Stereo R-CNN
shows poor robustness under patch attacks.

In the second row of Figure 8, the DSGN model shows
less propagation of the patch activation in the first three
convolution layers (conv<1, 2, 3>), but the activation area
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at the last two layers of the feature extractor (conv<4, 5>)
are expanded slightly. According to the network structure of
DSGN, the feature extractor is connected to the Spatial Pyra-
mid Pooling (SPP) module, and the outputs of SPP branches
(branch<1, 2, 3, 4>) are fused with features from the former
layers for future prediction. Interestingly, we observe that
the patch activation area shrinks to its original size after the
SPP module (fusion<1, 2>). Hence, different from Stereo
R-CNN, the SPP module in the DSGN model restrains the
propagation of the patch impact. This demonstrates that DSGN
has strong robustness to adversarial patches due to the SPP
module in its network architecture. A similar observation
of the Spatial Pyramid structure can be found in another
study [6]. We can conclude that when the adversarial patch
is used to attack the model of Stereo R-CNN whose network
architecture is not equipped with the SPP module, the patch
exploits the weakness of the network architecture and amplifies
its impact on 3D object detection. For the DSGN model, the
SPP module in its network architecture restrains the impact
of the adversarial patch on 3D object detection. Therefore,
DSGN and Stereo R-CNN have different robustness to patch
attacks and demonstrate different performance on the average
precision of 3D object detection and the driving safety metrics.

VII. CONCLUSION

In this paper, we have systematically investigated the impact
of adversarial attacks not only on the object detection preci-
sion, but also on the driving safety of vision-based autonomous
vehicles. Specifically, we proposed an end-to-end driving
safety evaluation framework with designed performance met-
rics for the assessment of driving safety. Through extensive
evaluation experiments, we found that a significant precision
decline of 3D object detectors under the perturbation attack
only leads to a slight decline in the driving safety performance
metrics, but a mild precision decline of 3D object detectors
under the patch attack can result in a significant performance
degradation in driving safety. This finding suggests that it is
desirable to evaluate the robustness of deep learning models
in terms of driving safety rather than model precision. The
proposed work can help guide the selection of deep learning
models. The code of our evaluation framework is available
upon request.

In the future, based on our experiments and discovered
causes, we plan to expand our study to the autonomous vehi-
cles that fuse the information from both LiDARs and cameras,
and consider other types of attacks, such as attacks against
LiDARs. Furthermore, we plan to design countermeasures for
deep learning models against adversarial attacks by leveraging
the spatial pyramid structure. Our future studies will also be
conducted in an end-to-end fashion.
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